- The simple linear regression model consists of the mean and variance function, \[ \begin{align*} \text{E} (Y \; | \; X = x) &= \beta_0 + \beta_1 x\\ \text{Var} ( Y \; | \; X = x) &= \sigma^2 \end{align*} \]
- Parameters are unknown quantities that characterize a model.
- Estimates of parameters are computable functions of data and are therefore statistics.